登录

双语推荐:Pd@CeO

采用XRF、XRD、SEM和CH4-TPR表征手段,研究了Ce改性ZSM-5分子筛载Pd催化剂在CO、CH4氧化过程中的CeO2-Pd协同作用。结果表明,经Ce改性后ZSM-5分子筛的载Pd量提高;Pd/Ce-ZSM-5催化剂对CH4的起始吸附温度降低;Pd/Ce—ZSM-5催化剂中Ce主要以CeO2形态存在。Pd是CO的催化氧化活性物种,CeO2-Pd协同作用可促进CO的氧化。Pd和PdO均是CH4的催化氧化活性物种,CeO2的供氧一储氧特性有助于Pd—PdO的转化,CeO2与Pd的相互作用使Pd/Ce-ZSM-5催化剂具有高的CO和CH4催化氧化活性。
CeO2-Pd interactions in Ce-modified ZSM-5 supported Pd catalyst for oxidation of CO and CH4 is investigated by XRF, XRD, SEM and CH4-TPR. The results show that amount of supported Pd in Ce-ZSM-5 is increased. For Pd/Ce-ZSM-5, adsorption starting-temperature of CH4 is decreased. Cerium oxide (CeO2) is mainly in Pd/Ce-ZSM-5 catalyst. Activated species of CO oxidation is Pd. Conversion rate of CO oxidation is increased because of CeO2-Pd interaction. Activated species of CH4 oxidation are Pd and PdO. Transformation of Pd→PdO is promoted by supply-storage oxygen of CeO2. Activity of Pd/Ce-ZSM-5 for CO and CH4 oxidation is enhanced due to interaction between CeO2 and Pd.

[ 可能符合您检索需要的词汇 ]

用共浸渍法制得了Pt-Rh-Pd/CeO2-La2O3/A1203催化剂,采用X射线衍射(XRD)对催化剂进行表征,使用配气测试系统对催化剂的活性进行评价。正交试验结果表明,对CO的氧化,选择最佳催化剂的配比为Pt-Rh-Pd0.1%,CeO2 5%,La2O34%,对NO的还原,其最佳配比为Pt-Rh-Pd 0.1%,CeO2 4%,La2O34%。稀土氧化物(La2O3、CeO2)作为助剂,能改善Pt-Rh-Pd/CeO2-La2O3/A12O3催化剂的催化性能,但不能起主要作用。
The Pt-Rh-Pd/CeO2-La2O3/Al2O3 catalysts were prepared with method of co-impregnation, and characterized by X-ray diffraction (XRD). Its catalytic activities were evaluated bygas mixing test system. The results of orthogonal experimentsshowed that the best catalyst formula is Pt-Rh-Pd 0.1%, CeO25%, La2O34% to the oxidation of carbon monoxide, while to the reduction of NO, the best catalyst formula is Pt-Rh-Pd 0.1%, CeO24%, La2O34%. Rare earth oxides (La2O3, CeO2) as co-catalyst, only can improve catalytic ability of Pt-Rh-Pd/CeO2-La2O3/Al2O3, but do not play critical roles.

[ 可能符合您检索需要的词汇 ]

采用附着沉积法和浸渍法引入助剂CeO2对g-Al2O3载体进行改性,然后担载Pd制备催化剂.通过XRD、H2-TPR和CO-FTIR等手段对催化剂的物相结构、还原性能和CO吸附特性进行表征,并对催化剂的甲醇分解性能进行测试.结果表明,附着沉积法能够使CeO2在g-Al2O3载体上达到较高的分散状态,从而增强了CeO2和Pd在g-Al2O3上的相互作用,提高了催化剂的甲醇分解活性和H2(CO)的选择性.
CeO2 modified g-Al2O3 supports were prepared by deposited-precipitation method or impregnation method, and then the Pd supported catalysts were prepared and tested for methanol decomposition. The structure and reducibility and CO adsorption property of the prepared catalysts were characterized by XRD, H2-TPR and CO-FTIR techniques, respectively. It was found that highly dispersed CeO2 particles were achieved on g-Al2O3 supports prepared by deposited-precipitation method. In the case, a strong Pd-CeO2 interaction through the interface between Pd and CeO2 occurred, which resulted in high activity and high selectivity of H2(CO) for methanol decomposition.

[ 可能符合您检索需要的词汇 ]

研究了不同Au/Pd摩尔比的AuPd/CeO2双金属催化剂在苯甲醇氧化制苯甲酸及其钠盐反应中的催化活性,利用XRD, UV-Vis DRS, TEM和XPS等手段对催化剂的结构进行了系统考察。结果表明, Au-Pd纳米颗粒以合金形式分散在CeO2载体上,不同Au/Pd摩尔比会影响催化剂表面活性物种的粒径大小和尺寸分布,并改变催化剂表面物种的组成。 Au-Pd之间的电子效应和协同效应显著影响其催化活性。当Au/Pd摩尔比为3时催化剂表现出最好的催化活性,苯甲酸产率可达92%。此外,双金属催化剂的催化活性显著优于单金属催化剂,主要归因于Au和Pd之间的协同效应。 AuPd/CeO2催化剂还具有良好的稳定性, Au/Pd摩尔比为3的AuPd/CeO2催化剂使用7次后仍然具有较高的催化活性。
A series of AuPd/CeO2 bimetallic catalysts with different Au/Pd molar ratios were investigated and their catalytic performance in the oxidation of benzyl alcohol to sodium benzoate and benzoic acid under solvent-free conditions was studied. The supported catalysts were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The Au-Pd nanoparticles were successfully deposited onto CeO2 as a homogeneous alloy. The activity of the bimetallic catalysts was superior to that of the corresponding monometallic catalysts. This improvement was attributed to the synergistic effect between Au and Pd. The catalyst with an Au/Pd molar ratio of 3/1 showed the best catalytic performance (the yield of benzoic acid reached 92%), and it could be easily recovered and reused for more than seven successive reactions without significant loss of activity.

[ 可能符合您检索需要的词汇 ]

以La改性的Al2O3为载体,采用共吸附浸渍法制备了一系列不同CeO2含量的单Pd密偶催化剂,并对其进行了表征.PdOx和CeO2之间的强相互作用改善了Pd0再氧化为PdO的能力,同时增强了反应条件下硝酸盐,亚硝酸盐和异氰酸盐在载体上的吸附.因此适量CeO2的添加明显改善了新鲜催化剂对HC和NOx的催化性能,且当CeO2添加量为2%时催化效果最佳.Pd-Ce界面上PdOx和CeO2间强相互作用也使得PdOx物种在高温时仍能以小颗粒的形式分散在载体上,从而显著地提高催化剂的热稳定性.经1100°C高温老化后,CeO2(2%–4%)的存在明显拓宽了HC和NOx的操作窗口,这对于提高单Pd密偶催化剂在汽车尾气处理上的催化性能有重要意义.
A series of La-Al2O3 supported Pd-Ce close-coupled catalysts were synthesized by a co-adsorption impregnation method and subsequently investigated. In the case of fresh catalysts, the presence of an optimal concentration of ceria obviously promoted the catalytic activity during HC and NOx eliminations, owing to the interaction between the palladium oxide species (PdOx) and CeO2 that improves the oxidation of Pd0 to PdO and enhances the adsorption of nitrite/nitrates and isocyanate intermediate species on the support under reaction conditions. Pd-Ce(2.0)/La-Al2O3 catalyst (where 2.0 is the wt%of CeO2) exhibited the highest catalytic activity for HC and NO eliminations. Following aging at 1100 °C, the operational window for HC and NOx conversions was broadened and the thermal stability of the catalysts was also improved as a result of the presence of an appropriate quantity of ceria (2.0-4.0 wt%). The enhanced interactions between PdOx and CeO2 evidently led to the formation o

[ 可能符合您检索需要的词汇 ]

向Pt-Pd/CeO2-ZrO2-Al2O3(Pt-Pd/CZA)商用柴油机氧化型催化剂(DOC)中加入多孔SiO2以提高其抗硫性.使用多层涂覆法在Pt-Pd/CZA催化剂表面覆盖一层多孔SiO2,从而制得SiO2/Pt-Pd/CeO2-ZrO2-Al2O3(SiO2/Pt-Pd/CZA)抗硫DOC.并使用扫描电子显微镜(SEM),H2程序升温还原(H2-TPR),氮气吸脱附,X射线能谱(EDX)和热重分析(TGA)等对其进行表征.SEM结果显示,SiO2层以多孔形式均匀覆盖在催化剂表面.氮气吸脱附结果表明,所添加的SiO2的织构性质与Pt-Pd/CZA催化剂的织构性质相似,因而表面覆盖的SiO2并未明显改变Pt-Pd/CZA催化剂的比表面积和孔结构.H2-TPR结果证实表面覆盖的SiO2不影响Pt-Pd/CZA催化剂的还原性能.EDX和TGA结果说明表面覆盖SiO2可以抑制硫物种在催化剂表面的形成及累积.最终,本文所制备的SiO2/Pt-Pd/CZA催化剂在保持Pt-Pd/CZA商用DOC的高活性及耐久性的同时有效提高了其抗硫性.
In this work, porous SiO2 was added to the Pt-Pd/CeO2-ZrO2-Al2O3 (Pt-Pd/CZA) commercial diesel oxidation catalyst (DOC) to improve its sulfur resistibility. The SiO2/Pt-Pd/CeO2-ZrO2-Al2O3 (SiO2/Pt-Pd/CZA) catalyst was prepared by surface coating porous SiO2 onto the Pt-Pd/CZA monolithic commercial DOC using a multilayer coating method. The as-prepared catalysts were characterized by scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption-desorption, energy-dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA). SEM images show that the SiO2 layer is porous and uniformly covers the surface of the catalyst. Nitrogen adsorption-desorption isotherm results imply that the texture properties of the as-added SiO2 are similar to those of the Pt-Pd/CZA catalyst, and hence the specific surface area and pore structure of the Pt-Pd/CZA catalyst do not obviously change upon cladding with SiO2. The H2-TPR results imply that the reducti
采用沉淀-沉积法制备了PdO/CeO2催化剂,并使用X射线衍射、高分辨透射电镜、N2吸附-脱附等温线、X射线光电子能谱和Raman光谱对催化剂进行了表征.表征结果显示, Pd在复合物中以Pd2+形式存在; PdO和CeO2间的相互作用提高了CeO2中的Ce3+含量.通过酸性橙7和水杨酸的类芬顿降解考察了PdO/CeO2的多相类芬顿和可见光芬顿催化活性.结果表明, PdO沉积显著地促进了水杨酸的类芬顿降解,催化剂的PdO含量为1.0 at%时其活性最佳.染料酸性橙7在可见光照射条件下会引发染料光敏化效应.吸附的染料分子在光激发后通过界面电子注入促进了Ce3+自表面过氧物种的再生.由此, PdO负载和可见光照射的共同作用下,1.0 PdO/CeO2催化剂的酸性橙7类芬顿降解速率常数为3.90 h-1,为纯CeO2活性的50倍左右.
A PdO/CeO2 catalyst was prepared by deposition‐precipitation method and characterized with X‐ray diffraction, high‐resolution transmission electron microscopy, N2 adsorption‐desorption, X‐ray photoelectron spectroscopy and Raman spectroscopy. The results show that the Pd is pre‐sented as Pd2+in the catalyst. The interaction between the deposited PdO and CeO2 increases the Ce3+content. The catalytic activity of PdO/CeO2 was tested in the heterogeneous Fenton‐like degra‐dation of acid orange 7 (AO7) and salicylic acid (SA), both in the dark and under visible irradiation. Deposition of PdO accelerates the Fenton‐like degradation of SA, which reaches a maximum at 1.0 atom%PdO loading. A dye sensitization effect was seen with AO7 under visible irradiation. Dye sensitization promotes the regeneration of Ce3+by interfacial peroxides species through interfacial electron injection. Consequently, the combined effects of PdO loading and visible light irradiating enhanced the Fe

[ 可能符合您检索需要的词汇 ]

Praseodymium(Pr) was impregnated to CeO2-ZrO2 solid solution by an impregnation method.The as-obtained Pr modified CeO2-ZrO2 was impregnated with 1 wt.% Pd to prepare the catalysts.The structure and reducibility of the fresh and hydrothermally aged catalysts were characterized by X-ray diffraction(XRD),Raman,X-ray photoelectron spectroscopy(XPS),CO chemisorption and H2 temperature-programmed reduction(H2-TPR).The oxygen storage capacity(OSC) was evaluated with CO serving as probe gas.Effects of impregnated Pr on the structure and oxygen storage capacity of catalysts were investigated.The results showed that the aged Pr-impregnated samples had much higher OSC and better reducibility than the unmodified ones.The scheme of structural evolutions of the catalysts with and without Pr was also established.Partial of the impregnated Pr diffused into the bulk of CeO2-ZrO2 during ageing,which inhibited the sintering,and increased the amount of oxygen vacancies in CeO2-ZrO2 support.Furthermore,th
Praseodymium (Pr) was impregnated to CeO2-ZrO2 solid solution by an impregnation method. The as-obtained Pr modi-fied CeO2-ZrO2 was impregnated with 1 wt.%Pd to prepare the catalysts. The structure and reducibility of the fresh and hydrother-mally aged catalysts were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), CO chemi-sorption and H2 temperature-programmed reduction (H2-TPR). The oxygen storage capacity (OSC) was evaluated with CO serving as probe gas. Effects of impregnated Pr on the structure and oxygen storage capacity of catalysts were investigated. The results showed that the aged Pr-impregnated samples had much higher OSC and better reducibility than the unmodified ones. The scheme of structural evolutions of the catalysts with and without Pr was also established. Partial of the impregnated Pr diffused into the bulk of CeO2-ZrO2 during ageing, which inhibited the sintering, and increased the amount of oxygen vacancies in CeO2-ZrO2 sup

[ 可能符合您检索需要的词汇 ]

采用DFT+U方法研究了过渡金属替代的CeO2(111)表面上的NO+CO反应机理,以探求不同过渡金属对N2选择性的影响。结果表明,在反应过程中,反应活性中心由过渡金属单原子与其最近邻的氧空位组成。 NO在过渡金属-氧空位上发生N–O断键,不同过渡金属上该还原步骤的难易程度不同。计算发现,右过渡金属Rh, Pd和Pt替代的CeO2(111)表面可以与吸附物之间形成较强的吸附作用,进而可以达到较高的N2选择性。其主要原因是右过渡金属具有较多的d电子,可以与吸附小分子之间形成有效的反馈键。而左过渡金属拥有较少的d电子,难以有效抓住吸附物,最终导致较低的N2选择性。
We present here a density functional theory plus U study of NO reduction with CO, catalyzed by a single transition metal atom (TM1=Zr1, Tc1, Ru1, Rh1, Pd1, Pt1)‐doped CeO2(111). The catalytic cen‐ter was identified as the TM dopant in combination with lattice oxygen. The investigation into N2 selectivity focused on three key elementary steps: gaseous N2O formation, subsequent re‐adsorption, and N–O bond scission to produce N2. In these steps, Rh1, Pd1, and Pt1/CeO2(111) exhibit a higher selectivity, whereas the other systems (Zr1, Tc1, Ru1) TM1/CeO2 show a lower selec‐tivity. The higher selectivity displayed by Pt1, Pd1, and Rh1 dopants arises from the availability of valence d electrons, which permit the formation of strong chemical bonds with the reactants and intermediates. Calculated results agree well with experimental findings, and the insights gained can be used to guide the rational design of the doped oxides for catalysis.
Barium oxide was developed successfully to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3(CZLA) compound oxides by impregnation method. N2 adsorption(BET), X-ray diffraction(XRD), H2-temperature-programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the influence of BaO on the physicochemical properties of catalyst. And catalytic activity tests for methanol, CO, C3H8 and NO conversion were evaluated. Catalytic activity results showed that BaO had a positive effect on the conversion of all pollutants. H2-TPR results suggested that the addition of BaO increased the reductive ability of the palladium catalysts. The XPS results indicated that doping BaO also improved the dispersion of Pd species and increased the amounts of Ce3+ on the Pd-Ba/CZLA catalyst surface, which led to a better redox property. The excellent redox property helped to improve the catalytic activities toward all the pollutants over Pd-based catalysts.
Barium oxide was developed successfully to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3 (CZLA) compound oxides by impregnation method. N2 adsorption (BET), X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the influence of BaO on the physicochemical properties of catalyst. And catalytic activity tests for methanol, CO, C3H8 and NO conversion were evaluated. Catalytic activity re-sults showed that BaO had a positive effect on the conversion of all pollutants. H2-TPR results suggested that the addition of BaO in-creased the reductive ability of the palladium catalysts. The XPS results indicated that doping BaO also improved the dispersion of Pd species and increased the amounts of Ce3+on the Pd-Ba/CZLA catalyst surface, which led to a better redox property. The excellent redox property helped to improve the catalytic activities toward all the pollutants over Pd-based catalysts.

[ 可能符合您检索需要的词汇 ]