登录

双语推荐:星光导航

近年来高超声速飞行器的研究受到世界各国的重视,具有重大的军事意义,其中导航、制导和控制是高超声速研究的关键技术。鉴于星光导航有着抗干扰能力强、导航精度高、自助式导航等特点,文中主要研究了高超声速飞行器使用星光导航方法的星图复原算法。考虑到高超带来的气动光学效应,在分析高速层流以及湍流流场的基础上,应用增量Wiener滤波器和有限支持域上的盲解卷积复原算法进行退化星图的复原。针对高速飞行器星光导航对复原星图的要求,仿真分析了复原星图的质心偏差及识别特征量变化。仿真结果显示,有限支持域上的盲解卷积复原算法精度较高,且经复原后的星图,能快速被高速飞行器星光导航系统正确识别。
In recent years,the hypersonic aircraft technology is paid more and more attention for its great significance for military application. The guidance, navigation and control technology is one of the key technologies of hypersonic aircraft. And as one of widely used automatic navigation method,which is of such advantages as high navigation accuracy, good anti-interference ability, and auto-navigation ability, the restoration algorithm of star map for hypersonic aircraft was studied in this paper. Considered the aero-optical effects caused by hypersonic flight, the simulation of turbulence-degrade star map was studied, and the increment Wiener filter and the restoration algorithm of iterative blind deconvolution in limitation support region were used for restoration of the turbulence-degraded star map, respectively. The simulation result shows that, the latter method is of higher precision and the restored star map can be identified by the celestial navigation system correctly.

[ 可能符合您检索需要的词汇 ]

常规惯性/天文组合导航方法难以直接应用于高超声速飞行器机载环境下以载体系为基准进行星光测量的情况,且在可见星只有一颗时无法连续组合。为此,构建了高超声速飞行器惯性/卫星/天文紧组合导航系统方案,通过分析载体系下星光仰角、方位角与惯导误差之间的转换关系,建立了载体系下惯性/天文角度组合模型。理论分析表明,该系统在只有一颗导航星时仍能辅助惯导工作,且可使观测噪声特性保持稳定,从而提高了天文对惯导辅助的连续性和组合滤波估计精度。仿真结果表明,在高超声速飞行器导航系统采用天文角度辅助后,姿态误差较无天文辅助情况的降低60%~70%。
The traditional inertial/celestial integrated navigation system (INS/CNS) is inapplicable for hypersonic vehicle, because it can’t work under the body coordinate accordance and single-star visible condition. In this paper, a tightly-coupled INS/GPS/CNS integrated navigation scheme for hypersonic vehicle is investigated. The new INS/CNS integrated model is built based on transformational relation between starlight elevation/azimuth and INS errors. The new model can stabilize the measurement noise characteristic and work under single-star visible condition, thus can improve the continuity and accuracy of INS/CNS integration. The simulation of hypersonic vehicle navigation indicates that, the system assisted by celestial angle observation shows 60%-70% improvement in attitude accuracy than the unassisted system.

[ 可能符合您检索需要的词汇 ]

传统航天器自主天文导航需要星敏感器、红外地平仪、磁强计等多种敏感器采集导航数据,增加了航天器的成本和复杂度。利用多视场星敏感器的特点,分别对恒星与地球进行成像,在完成姿态测量的同时,得到地心矢量信息,从而进行自主天文导航。首先建立地球几何模型,结合航天器轨道参数与多视场星敏感器的安装布局,实现各个视场内地球边缘的成像模拟,使用Steger算法提取地球边缘。综合考虑地球扁率的影响,对不同视场中观测到的地球边缘进行拟合得到精确地心矢量,最后进行基于星光角距的直接敏感地平导航仿真。仿真结果表明,在一个视场观测恒星,另外两个视场观测地球边缘的布局情况下,地心矢量精度和导航位置精度分别达到0.0172o(1σ)和190 m(1σ)。
The traditional methods for spacecraft autonomous navigation need several sensors, such as star sensor, infrared horizon sensor and magnetometer, to collect navigation data. As a result the load of spacecraft will gain in weight, size and power. Based on the advantages of multi- field of view (FOV) star tracker, an autonomous navigation method was proposed which used multi- FOV star tracker (MFST) to image the star and the earth respectively and got the orientation vectors of them. Combining with the orbit parameters of the spacecraft and the layout of the MFST, a mathematic model of the earth imaging was set up to implement the earth edge images in every single FOV. The Steger method was used to determine the earth edge in the images. Considering the earth oblateness, the orientation vector of the earth will be obtained through circle- fitting the earth edge points in each FOV. With the configuration that one FOV measures the navigation star and the other two FOV measures the earth ed

[ 可能符合您检索需要的词汇 ]

月球车工作前自身初始位置和姿态的确定对提高其导航能力具有重要作用,这一过程也称为初始化,初始化精度将严重影响其后续导航性能。针对月面特殊环境,现有的应用于地面环境的初始化方法不再适用这一问题,提出了一种静止条件下的月球车INS/CNS自主初始化方法。该方法分为粗初始化和精初始化两个阶段,粗初始化主要为精初始化提供初始参数。精初始化则综合利用惯性导航解算得到的水平速度、星光方位矢量和天体高度量测信息,并在考虑加速度计偏置引起的天体高度误差的基础上建立了精确的天体高度量测方程,精确估计月球车的初始位置和姿态。半物理仿真实验表明当陀螺漂移为0.1(°)/h、加速度计偏置为10?g、星敏感器精度为3″时,采用所提方法的初始位置估计精度优于30 m,初始姿态估计精度优于10″,是一种非常有效的月球车自主初始化方法。
The determination of initial position and attitude of lunar rover has great influence on its naviga-tion performance. The initialization accuracy has significant impact on the overall navigation accuracy. Since the traditional initial alignment method is not suitable for the lunar special environment, this paper presents a new autonomous initialization method for lunar rover based on INS/CNS integration. The method is divided into two stages: coarse initialization stage and fine initialization stage. The coarse initialization stage is mainly used to provide the initial parameters for the fine initialization stage. In the fine initialization stage, the horizontal velocity errors of INS, starlight vectors and star altitudes are used as measurements. The star altitude error caused by the biases of accelerometers is taken into account and its corresponding measurement equation is accurately established. Based on this, the position and attitude of the rover is estimated accurately. Semi-phy

[ 可能符合您检索需要的词汇 ]