分析指出,平台式惯性导航系统(GINS)中,惯性仪表安装在物理平台上,仪表测量值与理想(或参考)导航坐标系中参考信息的差值反映了失准角大小;而在捷联式惯性导航系统(SINS)中,数学平台替代了物理平台,在载体系中的仪表测量数据并不反映失准角大小,只有在通过姿态矩阵投影到计算导航坐标系后,才能反映失准角的大小。基于上述认识,提出了一种基于数据存储与循环计算的SINS初始对准方法,该方法:1)通过对存储的惯性仪表测量数据与当前罗经输出控制指令进行导航解算,得到新的姿态矩阵与罗经输入信号,进行罗经运算后进一步得到新的罗经输出指令,重复上述迭代过程,并在高速计算机的支持下,快速完成初始对准;2)引入瞬时凝固载体系,实时跟踪载体系相对于瞬时凝固载体系的姿态变化,并在对准结束时更新姿态矩阵中的载体系,从而保证对准结果的实时性意义。理论分析表明,该方法同时适用于罗经法自对准与传递对准。以罗经对准为例的仿真结果表明,与经典罗经法相比,两者对准精度相同,但对准速度显著提高。
In this paper, the following configuration is given by analysis:the inertial sensors are installed on physical platform in gimbaled inertial navigation system(GINS), and the difference between the sensor data and reference data from ideal navigation frame indicates the value of misalignment angle;while in strapdown INS(SINS), by using mathematical platform instead of physical platform, the mathematical platform reflects the direct relationship between sensor data and reference data. Based on the above viewpoint, a fast alignment method for SINS based on the stored data and loop calculation is introduced. In this method:1) navigation solution based on the stored sensor data and the current control signal from compass alignment loop is executed to produce new attitude matrix and input signal for alignment loop, then the calculation of alignment loop is run to produce new control signal, and the alignment time can be shortened by repeating the above process with the support of high perfor