先前研究者普遍认为,类别推理学习条件下可以同时表征诊断性信息和非诊断性信息,而类别分类学习条件下中只能表征诊断性信息,不能表征非诊断性信息。而最近又有研究者发现部分呈现条件下的类别分类学习可以表征非诊断性信息。本研究通过两个实验系统比较了全部呈现和部分呈现条件下类别分类学习的结果,进一步探讨了分类学习条件下信息的表征情况,并进一步探讨了部分呈现条件下的分类学习能够表征非诊断性信息的原因。实验1发现全部呈现6个特征、缺失1个特征(即部分呈现5个特征)、缺失2个特征(即部分呈现4个特征)3种条件下都能表征诊断性信息,但只有部分呈现条件下能表征非诊断性信息。实验2发现全部呈现7个特征、缺失2个特征(即部分呈现5个特征)、全部呈现5个特征3种条件下都能表征诊断性信息,但只有部分呈现条件下能表征非诊断性信息。总的实验结果表明:全部呈现条件下的分类学习只能表征诊断性信息,而部分呈现条件下的分类学习能够同时表征诊断性信息和非诊断性信息,并且部分呈现条件下表征非诊断性信息的原因是被试进行了推理学习,而非注意广度的变化。
Previous researches have showed that category learning by inference way can represent diagnostic information and nondiagnostic information, but learning by classifying way only can represent diagnostic information such as exemplar features information. However, recently studies show that learning partial exemplars by classifying also can represent nondiagnostic information ( Taylor & Ross, 2009). Taylor & Ross (2009) offered an explanation of selective attention that there are comparably loose of attention resources in partial condition than entire condition. They left out the possibility that the subject might inference the missing features in the partial condition. In the real world, exemplars often appear with occluded features, but in laboratory research, they are almost always presented in their entirety. Two experiments were conducted to explore how partial classification leads to nondiagnostic features learning. Experiment 1 replicated the Taylor & Ross (2009) finding that learn